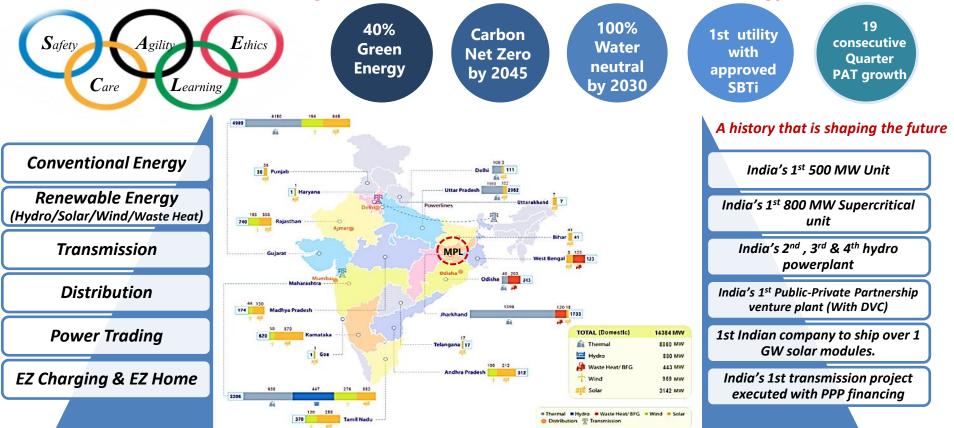


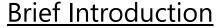
CII Energy Excellence Awards 2023-24

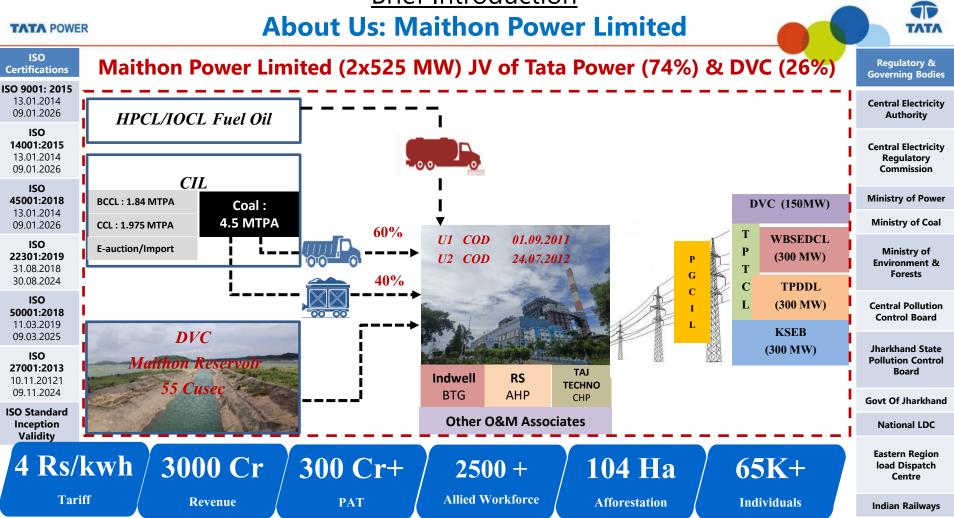
Maithon Power Limited

(A Joint Venture Company of Tata Power & Damodar Valley Corporation)

Lighting up Lives!

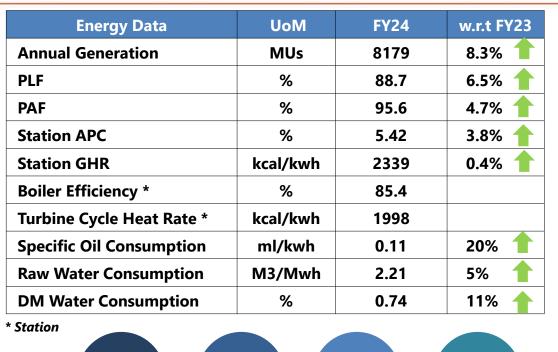

Brief Introduction


About Us: TATA Power



Empower A Billion Lives Through Sustainable, Affordable & Innovative Energy Solutions

TATA POWER



Energy Consumption Overview

Current Year Performance

30%

PAT

36%

Revenue

38%

EBIDTA

TATA POWER

10%

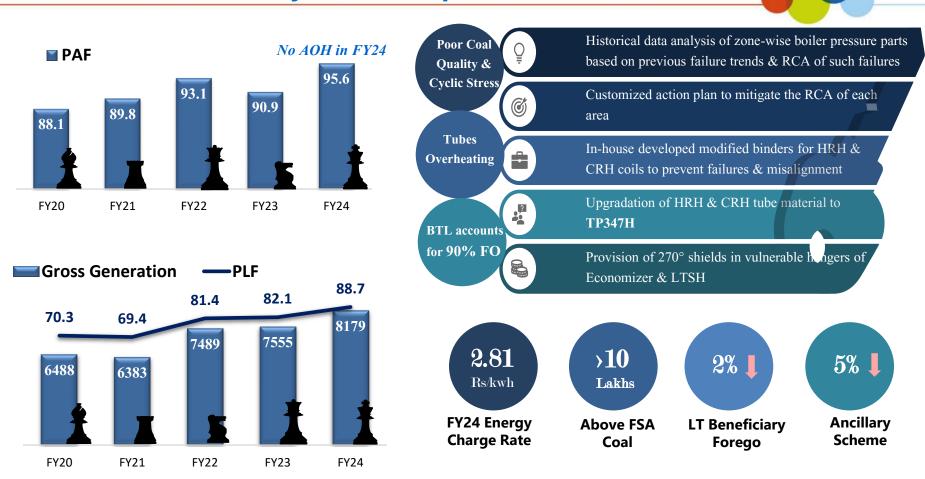
Generation

Highlights for FY24:

 MPL featured amongst the top 10 IPP power stations across India based on PLF rankings.

TATA

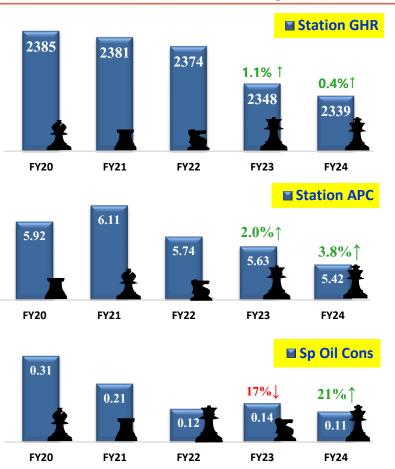
- **5 Golden Star** recommendation by National Safety Council
 - **Gold Recognition** by World Safety Organization for Safety & Environment.
 - **385 days of continuous operation of Unit 1** without Boiler Tube leakage
- Effective ash utilization of 105% in FY24 including 59% gainful ash utilization.
- CRISIL has revised rating to "CRISIL AA/Positive" rating for long-term borrowing.


Specific Energy Consumption

TATA POWER

Journey towards Operational Excellence

TC


ΤΛΤΛ

Specific Energy Consumption

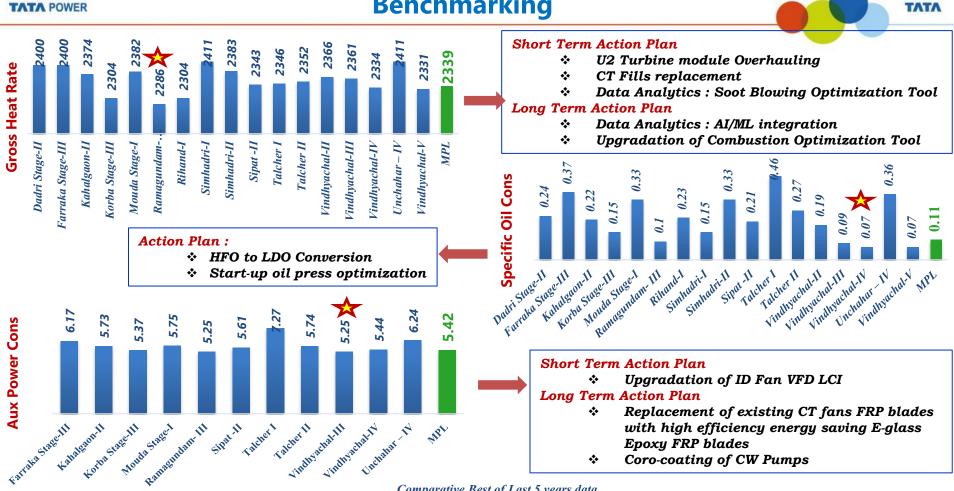
Journey towards Operational Excellence

•

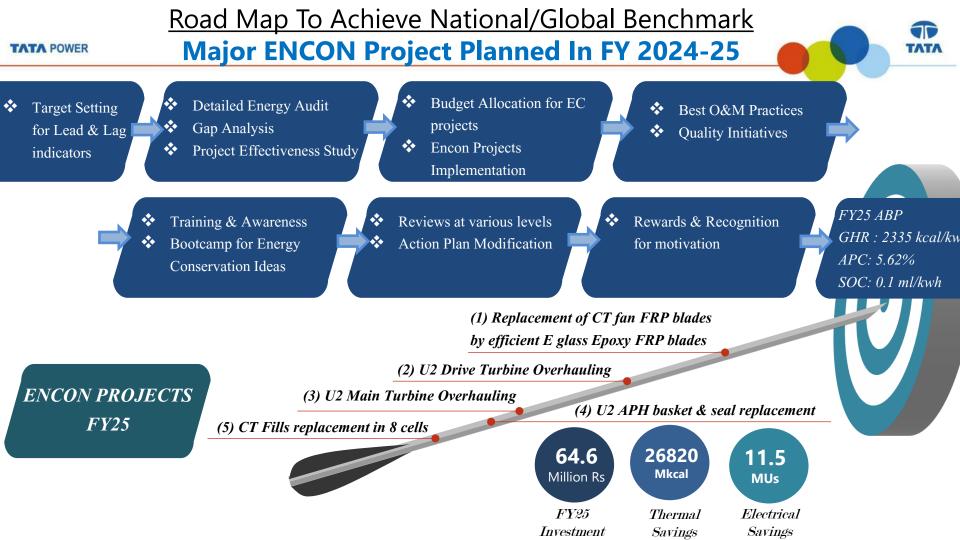
TATA POWER

Six Sigma : Sustenance of U1 1st stage Pressure in FY23 1) Platinum Award in CII National 6 σ Competition 2) Silver Award in ASQ SATEA Quality Competition 75

TATA

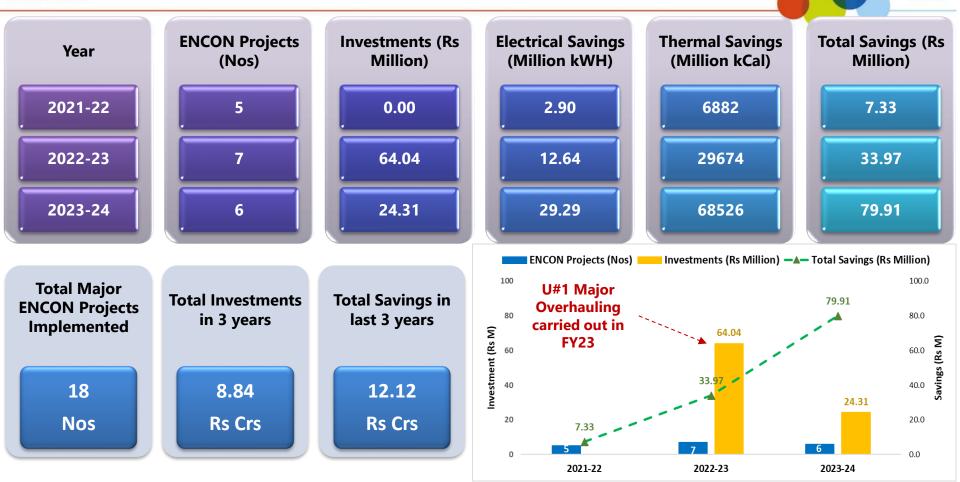

- 3) 1st in generation cluster 6 σ Competition
- Innovation through Digitalization :

 TCS IP2- Digital Twin : Dare to Try
 Combustion Optimization Tool (In-house)
- Six Sigma : Improvement of Station APC in FY22
- * Digitalization : ENMS Dashboard
- Innovation : APC Optimizer Tool (In-house)
- **Digitalization** : Start-up Oil Tool Kit
- ***** Best Practice (Delta) :
 - Judicious charging of HPH6 after HP-LPBP charging
 Coal Feeder minimum loading reduced from 15 tph to 9 tph during startup


17 kcal/kwh <u>Net Heat Rate</u> improvement in FY24 w.r.t FY23

Competitors, National & Global benchmark

Benchmarking


Comparative Best of Last 5 years data

Energy Savings Projects Summary for Last 3 Years

TATA

TATA POWER

Energy Saving Projects Implemented In 2021-22

MAITHON POWER

FY22 all ENCON projects implemented without any investment. All were process improvement carried out through brainstorming and adoption of best practices.

Title of Project	Annual Electrical Saving (kWh)	Annual thermal Saving - million kCal	Total Annual Savings (Rs million)	Investment Made (Rs million)	Comments/ Project details
Optimization of Coal Mill Operation based on PLF	1000000	2374	2.51	0.00	1419 hrs 4 mills operation @ <65% MLF & 2487 hrs 5 mills operation @ >85% MLF by increasing mill capacity utilization.
Stopping of Hot-well make up pump for 20 hours per day to optimize the power consumption by gravity filling in both units	231000	548	0.58	0.00	Auto stopping & standby of both hotwell make up pump by logic changes has been implemented in both unit & gavity filling line for hotwell make up is lined up in both units resulting in stopping of hotwell makeup pump for 20 hrs per day.
Main plant air compressor power consumption optimization through reduction of header press set point.	348000	826	0.88	0.00	3 nos of compressors were in service with header set point reduced from 6.4 ksc to 6.1 ksc. Receiver drain timer setpoint optimized.
Primary Air header pressure optimization to reduce the PA fan power consumption	956000	2270	2.45	0.00	PA header pressure optimized from 765 to 750 mmwc, resulting in reduction of 5 amps PA Fan motor current for individual unit.
Air handling Unit (AHU) power consumption optimization	364000	864	0.91	0.00	8 out of 16 Air washery blowers' operation stopped (for TG1/TG2/compressor house/DG house) during low ambient temp (for 2 months during winter)

MAITHON POWER

Energy Saving Projects Implemented In 2022-23

Title of Project	Annual Electrical Saving (kWh)	Annual thermal Saving - million kCal	Total Annual Savings (Rs million)	Investme nt Made (Rs million)	Payback (Months)	Comments/ Project details
Arresting air infiltration in Unit#1 Boiler flue gas path & Air Pre-Heater (APH). Energy saving due to reduction in gas load for ID Fan, FD Fan & PA Fan.	1295700	3042.3	3.67	1.82	6.0	Arresting air infiltration in U#1 Boiler's flue gas path and Air Preheater (APH) can indeed result in significant energy savings due to the reduction in (flue gas+air) load. The project was planned during U#1 annual shutdown in Q4 FY23.
Unit#1 APH basket & seal replacement. Energy saving due to reduction in Boiler flue gas exit temperature.	1523412	3577.0	4.07	16.27	48.0	Energy savings primarily by reducing the boiler flue gas exit temperature. It has Improved the Heat Transfer Efficiency and better environmental compliance by lowering emissions of pollutants such as NOx.
Overhauling of Unit#1 Turbine modules. Energy saving due to reduction in 1st stage steam pressure.	5980868	14043.1	15.97	21.69	16.3	Overhauling Unit#1 Turbine modules and reducing the 1st stage steam pressure can result in energy savings through improved efficiency, reduced steam consumption.
Unit-1 TDBFP Cartridge replacement. Energy saving due to reduction in live steam flow in TDBFP.	1013295	2379.2	2.71	4.23	18.7	It results in significant energy savings due to the reduction in live steam flow required for pump operation.
Condenser Cleaning & CT fills replacement of Unit-1 to improve Condenser vacuum	1882577	4420.3	5.03	10.19	24.3	Condenser cleaning & CT fill replacement for Unit-1 can lead to significant improvements in condenser vacuum, energy savings, and overall plant efficiency.
CT fills replacement to improve Condenser vacuum in Unit#2	711388	1670.3	1.90	9.84	62.2	Improvement in condenser vacuum, energy savings, and enhancement of overall plant efficiency.
Unit#1 HP Heater Overhauling. Energy saving due to FW Temp improvement at Economizer inlet	230767	541.8	0.62	0.00	0.0	Energy savings by improving the FW temp at the economizer inlet. This results in reduced fuel consumption, optimized boiler operation.

MAITHON POWER

Energy Saving Projects Implemented In 2023-24

Title of Project	Annual Electrical Saving (kWh)	Annual thermal Saving - million kCal	Total Annual Savings (Rs million)	Investme nt Made (Rs million)		
Unit# 2 ID Fans power consumption reduction by boiler APH water washing and arresting of flue gas duct air ingress	6927107	16203.9	19.39	4.10	2.5	APC Reduction : (1) Reduction of APH DP and (2) Rectification of flue gas duct air in leakages.
Stopping of Unit# 1&2 Cooling Tower ID fans w.r.t. Condenser Vacuum	755526	1767.3	2.11	0.00	0.0	<i>Reduction in APC due to strategic stopping of IDCT fans during low load & winter season.</i>
Reduction of DM Water Make up by Optimization of APRDS Steam Consumption	7608432	17797.6	19.47	0.00	0.0	APRDS Flow optimized from 12 TPH to 9 TPH by decreasing press Set point from 12 to 10 kg/cm2.
Unit# 1&2 CT fills replacement (total 12 Nos) to improve the Condenser Vacuum	13221833	30928.5	36.75	20.21	6.6	Improvement in heat rate by 4.57 kcal/kwh.
Optimization of Air washery blowers running hours during winter season when ambient temp below 30 degC	553093	1293.8	1.55	0.00	0.0	Revision of air washery blower running SOP based on brainstorming & past data.
AHP Stage-2 Conveying Air Compressor running hours optimization during MTL operation of units	228741	535.1	0.64	0.00	0.0	Process improvement

Few Glimpses of Improvement Carried Out

Condenser tubes after cleaning

PHE after cleaning

TATA

Old CT Fills after removal

RAPH basket replacement work U/P

RAPH Basket after cleaning

New CT Fills (after replacement) & new water distribution channel with spray nozzles

Innovative Projects Implemented

(1) Boiler Combustion & (2) APC Optimization Tool

In House Development of Excel Based Data Analytics

- ✤ Higher Cycle time for real time data analysis
- Limited data set for comparison.
- ✤ Limited feasibility for Multivariate exploratory data analysis

	Rar	nge	Best Combination as per Lo		oad/SCC range	oad/SCC range and RH MTL			
	Max	Min			Temp	. Limit	Limit		
Load	525	515	tal ills	Max. RH Metal	temp.	56	7.0		
Specific Coal Consumptio	0.65	0.63	a E	Load/SCC		523.07	0.632		
RH metal temp. Limit	57	75	RH n ning	Burner Tilt Position		38	3.6		
Mill Combina	tion (as require	ed)	and RH n running	OFA UPPER/LOWER Position		100	100		
Mill 2A	0	Standby	CC ar	Mill 2A Loadin	54.4	CAD 2A	1.1		
Mill 2B	1	Running 4		Mill 2B Loading	56.5	CAD 2B	9.6		
Mill 2C	1	Running	Load, : ect "1	Mill 2C Loading	56.2	CAD 2C	4.4		
Mill 2D	1	Running	Lo	Mill 2D Loadin	Mill Stopped	CAD 2D	CAD closed		
Mill 2E	1	Running	ige for Lc and sele	Mill 2E Loading	54.5	CAD 2E	23.3		
Mill 2F	1	Running		Mill 2F Loading	53.4	CAD 2F	38.1		
Mill 2G	1	Running	b g	Mill 2G Loadin	55.2	CAD 2G	9.8		
Mill 2H	0	Standby	Set I	Mill 2G Loadin	Mill Stopped	CAD 2H	CAD closed		

Expected RH MTM	573.1	574.0	569.7	569.1	567.5	571.6	572.3
Feeder Loading	Combination 1	Combination 2	Combination 3	Combination 4	Combination 5	Combination 6	Combination 7
Coal Feeder 2A	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Coal Feeder 2B	57.0	57.0	55.8	54.2	54.6	56.7	56.7
Coal Feeder 2C	55.2	56.8	54.6	55.1	55.6	57.6	57.8
Coal Feeder 2D	57.0	55.1	52.7	56.1	56.3	55.0	55.2
Coal Feeder 2E	53.0	56.1	55.1	53.9	54.3	53.1	53.0
Coal Feeder 2F	55.8	57.1	55.4	54.8	55.3	54.1	54.0
Coal Feeder 2G	51.9	53.3	52.5	53.7	54.1	48.5	48.5
Coal Feeder 2H	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Burner tilt	21	20	20	20.0	20.0	20.0	20.0
OFA LOWER DMD	100	100	100	100	100	100	100
OFA UPPER DMD	100	100	100	100	100	100	100

- Python based machine learning model integrated with PI historian for the influencing operational child KPIs
- ✤ Historical trend analysis through the web application for better visualization and review.
- Compare real time data w.r.t the benchmark data at similar operational conditions for all the operator control parameters to identify the opportunity for improvement and guide the operation team for data driven decision making.

Process Summary

- Data Aggregation
- Data Filtration: Extracted Tags relevant to Boiler & Significant Energy Users (SEUs)
- Feature Selection : Benchmark data with operational constraints such as RH MTM excursion limit, Mill Combination, AOH Before/After

"Innovation is taking two things that exist and putting them together in a new way" - Tom Freston

Innovative Projects Implemented

TATA POWER

Real-time Inputs: Load, Coal Flow, Mills non-availability, Before/After AOH & No. of Mill combinations suggested

Comparative Parameters:

Mill Loading & Burner Tilt, Coal SADC & Furnace to Windbox DP, Mills CAD position, RH MTM temperature

Load dependent Significant Energy Users ID Fan, FD Fan, PA Fan, Mill, CEP Operating conditions influencing the individual SEU performance APH FG DP, Duct leakage, Air Flow Enables prioritize Maintenance activities

	APC Optimizat	Unit 1 APC Tracker	(2)		Mr	Soumyadip Bara Unit 1 AFC Analy	A	Alert Check Excess air 02 design	
1 2	Date and Time 2024-05-03 09 03	2024-05-03	08.03			Load 522.96	A	Alert Check for APH / fum leakages; Check APH	
	-O- Load -O- CoalFlow - -O- PAFAN_Benchmark 1,000	O- IDFAN_Actual →O- FDFAN	I -O- PMAN -O- IDAN	Benchmark 🔶 FDFAN_Bend	hmark 🔟	Equipment	4	leakage and any devit 02	
	1,500	~~~~			••	ID FAN(Amp)	1538.58	1157.7	32.9
	900 600	·				FD FAN(Amp)	128.32	127.74	0.4
	03-05-24 09:03 03-05-24 11:03	03-05-24 13:03 03	-05-24 15:03 03-05-24	17:03 03-05-24 19:03	03-05-24 21:0	PA FAN(Amp)	252.14	254.7	-1.0
		91.11		FD & PA FAIN: 0 CEP: 0		Equipment	Actual	Prediction	Deviat
	Total Opportunity Savings	in kwh: 1394.93				CEP(Amp)	131,49	134.75	-2.4

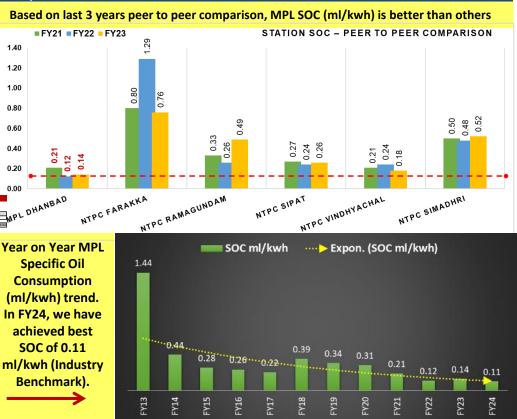
Won Platinum Award in 9th CII National Competition on Low-Cost Automation (LCA)

Innovative Projects Implemented

TATA POWER

Private and Confidential

(3) Optimization of Specific Fuel Oil Consumption



Consumption of oil mainly during boiler start-up activity. Hence, the scope of oil consumption reduction is under Cold/Warm/Hot start-up processes. Sp oil consumption (SOC in ml/kwh) has been reduced year on year [please refer below trend]. Best achieved SOC is 0.11 ml/kwh achieved in 2023-24. This has been achieved through various process improvement initiatives –

- 1. Reduction of furnace oil press up to 5.5 kg/cm2 during startup to minimize the SOC.
- 2. Hot flushing the boiler with elevated temperature feed water decreases the heat required during start-up, leading to a reduction in oil consumption.
- 3. Steam dumping during start-up is carried out with two adjacent coal feeders (A&B) & oil gun in single elevation (AB) only.

SOC Optimization Toolkit

4. In house development of boiler start-up toolkit to optimize the fuel oil consumption & improve the performance.

Utilization of RE Sources (Onsite/Offsite)

RENEWABLE ENERGY - ONSITE	Rooftop solar	Ground mounted solar
Source	Solar	Solar
Year of installation (FY22, FY23, FY24)	FY24	FY24
Installed capacity (MW)	0.0502	0.012
Generation (in Million kWh)	0.0140	0.000044
Consumption from On-site RE (in Million kWh)	0.0140	0.000044
Rooftop panel rated efficiency	15.23	14

RENEWABLE ENERGY - SOLAR THERMAL	Concentrate d solar thermal water heater	* *
Source	Solar	*
Rate capacity (kW or kcal/hr)	1.37	*
Hot Water capacity (kLPD)	24.94	

- MPL has successfully commissioned a gridconnected solar rooftop project with a capacity of 50.22 KW in Feb'2024.
- The solar project is designed to cater to the entire lighting load of our technical building.
- Anticipate 1500 T of CO₂ emission reduction over the lifespan.
- Combined with several other ongoing efforts, it underscores our commitment to playing our part in the initiative of "Duniya Apne Hawale."

Environment Management

Ash Utilization

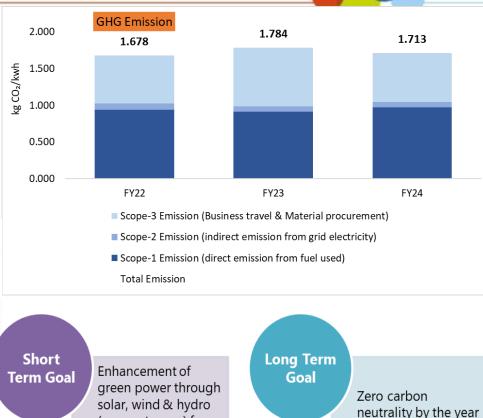
TATA	DOWED
IVIV	POWER

Particulars	UOM	2021-22	2022-23	2023-24
Ash Stock in Plant (yard+ pond)	Tons	283436	346397	238884
Ash Generated	Tons	1851817	1811336	2066001
Ash Utilization	%	90	97	105
Ash Utilized in manufacturing of cement	%	23.1	32.7	25.5
Ash Utilized in Fly Ash Bricks	%	5.8	4.7	1.2
Ash Utilized in Mine fillings	%	57.5	54.6	52.2
As Utilized for Roads pavement (NHAI)	%	0.0	1.3	6.0
Ash Utilized in Other Areas - Please mention	below			
Captive mines of SAIL and Tata Steel	%	2.4	3.1	2.2
Internal Lowland development	%	0.7	0.0	17.3
Embankment creation	%	0.0	0.0	1.1
Expenditure on Ash Utilization (Annual)	Lakhs	3042	4398	5946
Ash Handling done through various methods				
Ash Handled (Wet Method) - (Through Slurry Pumps)	%	25	25	26
Ash Handled (Dry Method) - (Through Bulkers)	%	23	23	21
Ash Handled (Semi Method) - (Through Ash Conditioners and dumpers and Rail)	%	52	52	53

TATA

Freedom Square (made by ash bricks & scrap materials)

Environment Management - Emissions


VOIDGAM

- Tata Power –MPL is aligned with UNSGD goal. MPL is committed towards fostering a world of sustainable development by focusing on energy efficiency, resource conservation, and empowering communities by –
- 1. 40% clean and green energy portfolio
- 2. Become carbon net zero by 2045
- 3. Zero waste to landfill before 2030
- 4. 100% water neutral by 2030

Real Time Data Acquisition And Monitoring

Description	STACK_1_TPP_UNIT1- NOx(mg/Nm3)	STACK_1_TPP_UNIT1- PM(mg/Nm3)	STACK_1_TPP_UNIT1 SO2(mg/Nm3)
Prescribed Standards	0 -	0 - 50	0 -
Maximum Data	1138.04	187.47	2130.09
Minimum Data	0.0	13.12	0.0
Geometric Mean	590.74	27.06	784.5
Median	617.96	26.88	789.36
Standard Deviation	123.36	8.33	133.43
Maximum Value At Time	2024-07-16 15:45:00	2024-07-16 06:00:00	2024-07-16 15:15:00
Minimum Value At Time	2024-07-01 20:45:00	2024-07-27 12:15:00	2024-07-01 20:45:00
Valid Data Points	2975	2975	2975
Total Data Points	2975	2975	2975
Data Availability %	100.0%	100.0%	100.0%

2045

(pump storage) for

YoY basis

reduction of intensity

Environment Management - Emissions

935

1350

1018

496

FY22

45

71

35

32

FY22

Particulate Matter (mg/Nm3)

SOx Emissions (mg/Nm3)

925

1341

1018

500

FY23

45

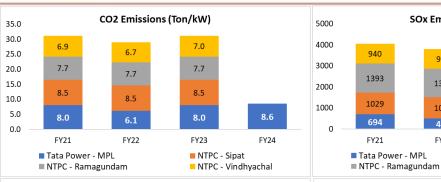
74

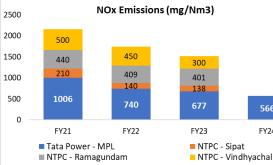
32

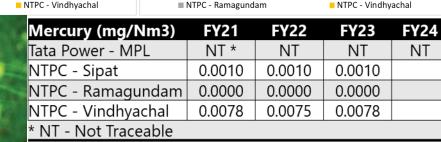
38

FY23

NTPC - Sipat


NTPC - Sipat


NTPC - Vindhvachal


FY24

FY24

MAITHON POWER

45

73

35

32

FY21

Tata Power - MPL

200

150

100

50

n

566

FY24

GHG Emission Intensity (Kg CO2 / Ton of *Product)* – *Comparison with peers*/ competitors.

- *Tata Power MPL is continuously improving its operational performance* to reduce the CO_2 emissions.
- SOx emissions FGD projects is under progress.
- NOx emissions Low NOx burner installation is planned in upcoming AOH.
- SPM level within specified limit & *better w.r.t peers.*

Environment Management - Emissions

MAITHON POWER

ENVIRONMENT MANAGEMENT - EMISSIONS MONITORING	UoM	FY21	FY22	FY23	FY24
Total CO2 Emissions/kW of Generation	Ton/kW	8.0	6.1	8.0	8.6
Current SOx Emissions at Full Load *	mg/Nm3	694	496	500	751
Current NOx Emissions at Full Load *	mg/Nm3	1006	740	677	566
Particulate Matter *	mg/Nm3	32.3	31.8	37.6	35.5
Mercury *	mg/Nm3	Non traceable	Non traceable	Non traceable	Non traceable

Action Plan to meet the latest emission norms as per Gazette Notification

- Installation of Flue-Gas Desulfurization (FGD) w.r.t CEA/MoEF notification to meet the SOx target as per new regulation/ norms.
- Wet limestone based FGD is a set of technologies used to remove sulfur dioxide (SOx) from boiler exit flue gases of fossil-fuel power plants.
- The FGD project work is under progress in MPL for both the units. Same will be completed by 31.12.2026.
- Installation of low NOx burners w.r.t CEA/MoEF notification to meet the NOx target as per new regulation/norms.
- The project is taken under Capex for installation of low NOx burner. Same will be completed by 31.03.2026.

TATA POWER Environment Management - Water												
ZLD	Water Consumption	Unit	2021-22	2022-23	2023-24							
tices in compliant	DM Water #	%	0.76	0.79	0.79							
Best Practice	Raw Water	m ³∕Mwh	2.27	2.32 *	2.21 *							
Best Practices in Compliant Water Management	# includes Start-up DM wat	t construction										
Plant Water Pl integrated 13 meters installed Real	-time Automated Alert-	lant Storm ter Recovery System	R_R_R	Lower erating Cost	inability							
Realtime Water Flow readings 1,647 mah. DP IX 0,02 Moder 67,66 Moder 1,353 mah. U.Sark Tu 0,02 Moder 67,66 Moder 607,79 Maker 0,02 Moder 40,66 Moder 001 Maters Water 001 Maters 002 Moder 001 Maters Water 001 Maters 001 Maters 001 Maters 001 Maters 01102024 12 001 Maters 001 Maters 01102024 12 001 Maters 01102024 12 01102024 12 001 Maters 01102024 12 01102024 12 001 Maters 01102024 12 01102024 12 01102024 12 01102024 12	Water Balance Analysis 46,196.0 ml 47,265 ml Previousder Consumption Izrek up (m M3) 33,084.0 ml 33,084.0 ml 32,09715 ml Total CW make-up: 40,598.0 ml (cV make-VP : 40+180 + R0 OL) CW make: 25,198.0 ml C: 75.0 Ro OL: Consumption CW make-up: 12,082.5 ml (cV make-up: 564.7 Service water: 5,700.5 CW make-up: 566.7 Service water: 5,700.5 CW make-up: 566.7 Service water: 5,700.5	Clean-wate	Primary Mi	ary Mixing Chamb xing Chamber Dil mmer	Solar Pump installed							

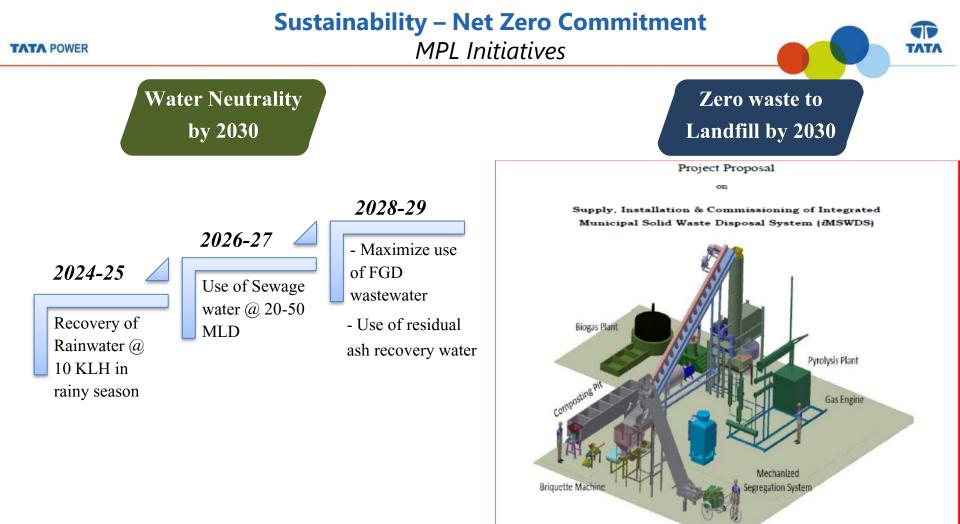
Sustainability – Net Zero Commitment

TATA POWER Commitment: Leadership with Care

- **Carbon Net Zero by 2045**
- Water Neutrality by 2030
- Zero waste to landfill before 2030
- No net loss of biodiversity
 Our Thrust Areas in MPL:

Resource Conservation

- Optimize Raw water consumption
- Rain-water harvesting
- Re-use of generated Waste-water
- Utilization of Biodegradable waste
- Scrap utilization from metal scrap


Energy Efficiency

- Optimization of SHR, APC to
- Benchmark values
- Ash Utilization

- * Habitat Protection
 - Absolute CO2 generation

ΤΛΤΛ

- Afforestation
- Tree sapling survival rate
- Promotion of Clean Energy
 - Providing EV charging station in plant to encourage use of EV.
 Battery operated Company vehicles

TATA POWER

518

510

17.0

ALL

Flexibilization Being Ready for Flexi Operation

Flexibilization Journey

Station MTL (Ex-bus): 680 MW
69% Machine Loading

- Station MTL (Ex-bus): 600 MW
- 61% Machine Loading
- Station MTL (Ex-bus): 541 MW
- 55% Machine Loading
- Participation in RRAS & SCED

Auto Sequence Operation of Coal Mill & Feeder

OLCS Logic

New Logic Developed under OLCS for Sequential Start/Stop of Coal Mill & Feeder and its associated drives (like operation of Mill & Feeder Seal air valves, Cold air gate, Hot air gate, Feeder outlet gate).

CLSC Logic

New Logic developed in CLCS like Mill PA flow control for HAD & Mill o/l temp control for CAD to automatically enable the loops to throw into auto mode with variable set points to PID increment/decrement to achieve desired gcess variables based on start/stop sequence respectively

Protection

Additional protection logics incorporated to throw the system (HAD/CAD) into manual mode during any trouble or interruptions in auto sequence mode, to ensure process and system safety

Process Stabilization

PA Flow set point is increased in steps of 10 at a definite rate starting from 10. The SP will increase only when actual air flow is established, so SP will increase from 40 to 50 TPH if actual air flow is >49TPH. In the entire process, if PA header pressure drops <=730mmWC, OUT BLOCK acts and increment of PA Flow output is blocked further and will be in action till PA header pressure is recovered.

50% Machine Loading achieved

• 1% Ramp compliance

• U2 achieved 36% during IGEF trial.

- U1 achieved 34% during inhouse trial.
- Participation in AGC quantum 60

Safe Shut Down

During shut down sequence, after feeder stop, HAD will become zero as per interlock and PA flow is maintained by CAD by override increment & decrement block with definite rate. CAD opens/closes to maintain air flow of 35-42 TPH

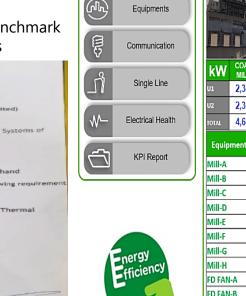
Graphical Interface

New graphical configuration developed which enables desk engineers to carry out and monitor auto sequence steps

Asset Management EnMS System

Home

Real Time


 $\tilde{\omega}$

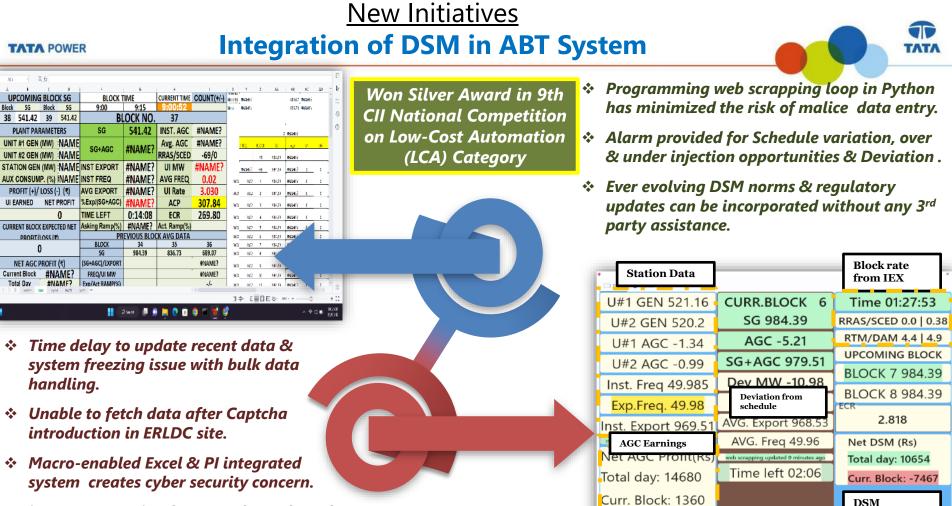
TATA POWER

Challenges during Implementation

- Integration of Schneider System into TATA Power Server (Cyber Security Threat).
- Standalone system with PI integration & no remote access to Schneider.
- Compare real time data w.r.t the benchmark data at similar operating conditions

120						
110	SYSTEMS AND SOR	UTIONS PRIVATE LIMITED				
	issued by Indian	E OF APPROVAL Register Quality Systems ems and Solutions Private Limited)				
ISO	This is to certify	that the Energy Management Systems (
820000	Organisation:	Maithon Power Limited				
50001	Address:	Village - Dambhul, P. O. Barbindia, PS: Nirsa Dhanbad - 828 205, Jharkhand				
015578	has been assessed and	found conforming to the following requi				
10000	Standard:	150 50001:2018				
1111	Scope:	Generation of Coal based Thermal Power				
1111	Certificate No.:	IRQS/221000080				
	Original Certification Date:	11/03/2019				
Gran	(ANAB) nting of NABCB Certificate:	10/07/2019				
	Current Date of Granting:	15/01/2022				
	Expiry Date:	09/03/2025				
		STEAL OFFICE				

Life Is Or	OEle	ider	Maitho	n Power Limited, Dhanbad						Server Reports			
STN POWI	:R (KW) 2	6,537	- /	1.			-	Equip	ment	Station (kW)	Equipment Name	U1 (KW)	U2 (k
		an.	14					c	HР	209	UAT-A	9,765.6	10,3
		(F)	×L				-	. 4	нP	4,716	UAT-B	7,644.4	6,7
			TH			The		R	WPH	0	ST	18,059.2	15,
Alternation of the local division of the loc				1.000	and in solid	and the later of t	- I -		ws	11,233	UST DAT01	441.4	42
				-			- F	10	693	UST DAT02	242.4	27	
	1				3H	1.	100	SI SI	NYD	1,931	SST-1	91.2	53
kW	COAL	PA FA	FD FAN	ID FAN	DMCW		CW	CEP	AC		SST-2	460.4	12
U1	MILL	2.257			PUMP 397		PUMP	PUMP	PUN 35	P	CW Pump-A	1,214.1	(
	2,317	2,257	<u> </u>	5,061			3,775	1,334		,	CW Pump-B	1,484.9	1,5
U2	2,313	2,378	· ·	4,899	437	459	1,564	1,285	31		CW Pump-C	1,076.2	(
TOTAL	4,630	4,635	2,383	9,959	834	907	5,339	2,619	66	31,976	DMCW Pump-A	0.0	27
Equipment Name U1 U2		Ea	Equipment Name		-	U1 U2		DMCW Pump-B	214.1	(
			(KW) 375.0	(KW) 0.0					W)	(KW)	DMCW Pump-C	183.2	21
Mill-A		_	409.5	419.0		D TRF (ID				1,268.4	BCW Pump-A	223.0	27
Mill-B Mill-C		_	409.5	278.5	Ľ	D TRF (ID				1,221.7	BCW Pump-B	0.0	(
Mill-D			336.2	460.7		D TRF (ID		'		1,218.0	BCW Pump-C	224.8	22
Mill-E			391.3	400.1		D TRF (ID	Fan-B Ch-			1,190.8	ESPT-DBT-01	139.9	14
Mill-F			0.0	0.0	CE	P-A		673		643.8	ESPT-DCT-01	122.3	5
Mill-G		-+	0.0	437.8	CE	P-B		0.	0	0.0	ESPT-DDT-01	115.7	8
Mill-H		-+	336.4	290.6		P-C		660		641.4	ESPT-DET-01	55.0	14
FD FAN	-A		583.1	584.7	A	W Pump-		331		317.7	ESPT-DBT-02	139.6	11
FD FAN			667.4	551.3		CW Pump-	В	20		0.0	ESPT-DCT-02	155.8	10
PA FAN	-		1,112.7	1,122	5	P-A E-CA Board	4	0.		0.0	ESPT-DDT-02	112.0	7
	-B		1.144.1	1,259.		L-CA Doard	a	U.	v	0.0		130.2	10


TATA

Energy Management System - Developed By Schneider Electric

The approval is solved as contented section term relativence of the finality Management System of the digatability to the access conduct which will be manifested by RBC. The use of the Accessibilities Mark industry sections in which explose a activities many by the centrolities with accessibilities no. Its DDL Construct Department of the Accessibilities of the Ac

Shashi Nath Mishra Head IRQS

Head Office: 52A, Adl Shankaracharya Marg, Opp.Powal Lake, Powal, Mumbai - 400 072, India

Earnings

🞬 🧔 🚓 🗔 🗈

 i-Macros security threat :Malware breach probabilities in PI system

Awards & Achievements

CII TCM Award for Cost Management

TATA POWER

Best Division Award 2023

Energy efficiency is the cleanest, quickest and most economical solution to reducing energy use.

Disclaimer: The contents of this presentation are private & confidential. Please do not duplicate, circulate or distribute without prior permission.

が登録る(前前本版単 Thank You!